Neural Processing of Complex Continual Input Streams

Felix A. Gers Jiirgen Schmidhuber

felix@idsia.ch juergen@idsia.ch

IDSTA, Corso Elvezia 36
6900 Lugano, Switzerland

www.idsia.ch

Abstract

Long Short-Term Memory (LSTM) can learn algorithms for temporal pattern processing not learnable
by alternative recurrent neural networks (RNNs) or other methods such as Hidden Markov Models
(HMMs) and symbolic grammar learning (SGL). Here we present tasks involving arithmetic operations
on continual input streams that even LSTM cannot solve. But an LSTM variant based on “forget gates,”
a recent extension, has superior arithmetic capabilities and does solve the tasks.

1 Introduction

In principle, RNNs are suited for tasks no other current sequence learning method can solve. Traditional
discrete SGL algorithms may faster learn grammatical structure of discrete, noise-free event sequences, but
cannot deal with noise or with sequences of real-valued inputs. HMMs are well-suited for noisy inputs but
also limited to discrete state spaces. Genetic Programming etc. in principle could search in general algorithm
spaces but is slow due to the absence of gradient information providing a search direction. Typical RNNs,
on the other hand, perform gradient descent in a very general space of potentially noise-resistant algorithms
using distributed, continuous-valued internal states to map real-valued input sequences to real-valued output
sequences.

Traditional RNNs (see survey: (Pearlmutter, 1995)), however, suffer from exponential decay of gradient
information. In presence of long time lags between relevant input and target events they fail to learn anything
within reasonable time. LSTM (Hochreiter and Schmidhuber, 1997) overcomes this problem by enforcing
non-decaying error flow “back into time.” Thus LSTM rather quickly solves many tasks traditional RNNs
cannot solve.

Recently, however, we identified a weakness of LSTM in dealing with continual input streams that are
not a priori segmented into separate training sequences, such that it is not clear when to reset the network’s
internal state. We introduced “forget gates” as a remedy (Gers et al., 1999).

Here we focus on tasks involving arithmetic operations on input streams that so far have been addressed
only in non-continual settings (Tsung and Cottrell, 1989; Hochreiter and Schmidhuber, 1997). There is a
level of arithmetic complexity where even standard LSTM fails in continual settings. We show that LSTM
with “forget gates” exhibits superior arithmetic capabilities and does solve the tasks in an elegant way.

2 Standard LSTM

The basic unit in the hidden layer of an LSTM network is the memory block, which contains one or more
memory cells and a pair of adaptive, multiplicative gating units which gate input and output to all cells in
the block. Each memory cell has at its core a recurrently self-connected linear unit called the “Constant
Error Carousel” (CEC), whose activation we call the cell state. In principle the CECs solve the error decay
problem (Hochreiter and Schmidhuber, 1997): in the absence of new input or error signals to the cell, the
CEC’s local error back flow remains constant. The CEC is protected from both forward flowing activation
and backward flowing error by the input and output gates respectively. When gates are closed (activation
around zero), irrelevant inputs and noise do not enter the cell, and the cell state does not perturb the
remainder of the network. Fig. 1 shows a memory block with a single cell. The cell state, s., is updated

Y
out

output gating h out = We Det,,
\
output squashing h(Sc ouput gate
: --=1.0 for Std. LSTM - - -,
° i
memorizing and forgetting y —W—net :
(CEC with self-connection) _@ =0 e
forget gate i
e :
input gating =W, —net,
\
input squashing g (netc input ate

Figure 1: The LSTM cell has a linear unit with a recurrent self-connection. Input and output gates regulate
read and write access to the cell whose state is denoted by s.. The function g squashes the cell’s input; h
squashes the cell’s output (see text for details).

based on its current state and three sources of input: net. is input to the cell itself; net;, and net,,; are
inputs to the input and output gates.

We consider discrete time steps t = 1,2,.... A single step involves the update of all units (forward pass)
and the computation of error signals for all weights (backward pass). Input gate activation y** and output
gate activation y°¥ are computed as follows:

Y = fing (O Wingm ¥ (D) 5 57 (O=fout; (Y Woutym ¥ (1)) - @

Throughout this paper j indexes memory blocks; v indexes memory cells in block j, such that ¢} denotes
the v-th cell of the j-th memory block (with S; cells); wyy, is the weight on the connection from unit m to
unit /. Index m ranges over all source units, as specified by the network topology. For gates, f is a logistic
sigmoid with range [0,1]. Net input to the cell itself is squashed by g. The internal state of memory cell
sc(t) is calculated by adding the squashed, gated input to the state at the previous time step s.(&1) (¢t > 0):

ey (8) = sey (t=1) + 5™ () glnetes (1)) (2)

with Sy (0) = 0. The cell output y° is calculated by squashing the internal state s. via the output squashing
function h, and then multiplying (gating) it by the output gate activation y°%t:

y© (1) = y*" () h(se; (1) - 3)

Finally, assuming a layered network topology with a standard input layer, a hidden layer consisting of
memory blocks, and a standard output layer, the equations for the output units k are:

v () = £ wem y™ (1)) (4)

where fj is a squashing function and m ranges over all units feeding the output units (typically all cells in
the hidden layer, but not the memory block gates).

Learning. See (Hochreiter and Schmidhuber, 1997) for details of standard LSTM’s backward pass.
Essentially, as in truncated BPTT, errors arriving at net inputs of memory blocks and their gates do not
get propagated back further in time, although they do serve to change the incoming weights. When an error
signal arrives at a memory cell output, it gets scaled by the output gate and the output nonlinearity h; it
then enters the memory cell’s linear CEC, where it can flow back indefinitely without change (thus LSTM
can bridge arbitrary time lags between input events and target signals). Only when the error escapes from
the memory cell through an open input gate and the additional input nonlinearity g, does it get scaled once
more and then serves to change incoming weights before being truncated. The update complexity is O(1)
per weight and time step. Hence LSTM is also computationally cheaper than BPTT and RTRL.

2.1 Limits of standard LSTM.

Memorizing for too long. LSTM allows information to be stored across arbitrary time lags, and error
signals to be carried far back in time. This potential strength, however, can contribute to a weakness in some
situations: the cell states s, often tend to grow linearly during the presentation of a time series (the nonlinear
aspects of sequence processing are left to the squashing functions and the highly nonlinear gates). In presence
of a continual input stream the cell states may grow in unbounded fashion, causing saturation of the output
squashing function, h. Saturation will (a) make h’s derivative vanish, thus blocking incoming errors, and
(b) make the cell output equal the output gate activation, that is, the entire memory cell will degenerate
into an ordinary BPTT unit. This problem did not arise in the experiments reported in (Hochreiter and
Schmidhuber, 1997) because cell states were explicitly reset to zero before the start of each new sequence.
Our solution to the above problem is to use adaptive “forget gates” (Gers et al., 1999), which learn to reset
memory blocks once their contents are out of date and hence useless.

Arithmetic capabilities. Due to its architecture LSTM is well suited for tasks involving addition,
subtraction and integration (Hochreiter and Schmidhuber, 1997). Such operations are essential for many
real-world tasks. But another essential arithmetic operation, namely multiplication, does pose problems.
Forget gates, however, originally introduced to release irrelevant memory contents, greatly improve LSTM’s
performance on tasks involving multiplication, as will be seen below.

3 Forget Gates

Standard LSTM’s constant CEC weight 1.0 (Fig. 1) is replaced by the multiplicative forget gate activation
y¥. The forget gate activation y¥ is calculated like the activations of the other gates and squashed using a
logistic sigmoid with range [0, 1]:

v () = o, O wem y™ (1)) - (%)

y® functions as the weight of the self recurrent connection of the internal state s. in equation (2). The
revised update equation for s. in the extended LSTM algorithm is (for ¢ > 0):

ser(t) = y9i(1) sey(t=1)+ y™i (1) g(netey (1)) , (6)

J

with Sy (0) = 0. Bias weights for LSTM gates are initialized with negative values for input and output gates
(see (Hochreiter and Schmidhuber, 1997) for details), positive values for forget gates. This implies that in
the beginning of the training phase the forget gate activation will be almost 1.0, and the entire cell will
behave like a standard LSTM cell. It will not explicitly forget anything until it has learned to forget.

3.1 Backward Pass

LSTM’s backward pass (see (Gers et al., 1999; Hochreiter and Schmidhuber, 1997) for details) is an efficient
fusion of slightly modified, truncated BPTT, and a customized version of RTRL. The squared error objective
function based on targets t* is:

B) = 5 Y exld) ; enlt) = 146 — 44(0)
k

We minimize E via gradient descent weight changes Awy,, = a 6;(t) y™(t—1), using learning rate a. Here
Ok (t) = fr(netx(t)) er(t) for output units k and

Sj
Sout; (1) = Fhut; (n€tout; (1)) [D hlser ()Y wer S1(t) (7)
v=1 k

for the output gate of the j-th memory block.

marker

random value

Figure 2: Tllustration of the continual addition (and multiplication) tasks.

For weights to cell, input gate and forget gate we adopt an RTRL-oriented perspective: We define the

internal state error e, ;

» with respect to weights w;,, feeding the cell ¢§ (I = c})

or the block’s input gate (I =in) or the block’s forget gate (I =). For each cell, e,_, is given by.
2

€scy (t) =y (t) h'(sex((Zwkc O (t)) (8)

in,c}} are zero for t = 0. For ¢t > 0 we get:

630;) 3.90;; (t—1) o . . -

Werm Owerm Y9 (t) + g'(netey () y™ (t) y™ (1) , 9)
Oscy (t) Osey(t=1) ’ i

MWin,m - OWin;m y#(t) + g(netey (t) fin, (netin; (1)) y™(t-1) , (10)
Bsey(t) Bsea(t—=1) ,)

Wy, m = Oy, m Y7 (t) + sy (t—1) [, (nety,; (1)) y™(t=1) . (11)

Updates of weights to the cell ch;m only depend on the partials of this cell’s own state, whereas updating

the weights of the input gate (I = in) and of the forget gate (I =) requires to sum over the contributions
of all cells in the block:

Bses (1) a) &)
awcm , Awn(t) =« 21 esC;, Bur. (12)

ch;m()= es, ; (t)

The storage complexity for the backward pass does not depend on the length of the input sequence. The
update complexity is O(1) per weight and time step. Compare to BPTT (peak storage complexity O(S),
where S is sequence length) and RTRL (update complexity O(W?) per time step, where W is the number
weights) (Williams and Zipser, 1989; Robinson and Fallside, 1987). Like standard LSTM but unlike BPTT
and RTRL, extended LSTM is local in space and time, despite its superior long time lag capabilities.

4 Experiments

Many typical real world sequence processing tasks involve continual input streams, distributed input rep-
resentations, continuous-valued targets and inputs and internal states, and long time lags between relevant
events. So we designed several artificial nonlinear tasks that combine these factors. Note that the combina-
tion excludes all other sequence learning methods (SGL, HMMs, BPTT, RTRL, etc.) from being applicable
at all!

General set-up. We feed the net continual streams of 4-dimensional input vectors generated in an
online fashion. We define tg = 0 (stream start) and ¢, = ¢, 1 + T + (-=1)" -V for n = 1,2,..., where

vV e{o,1,..., %} is chosen randomly, and integer T is the minimal time lag. The first component of each
input vector is a random number from the interval [—1,41]. The second and third serve as “markers”: they
are always 0.0 except at times t5,, 1 when either the second component is 1.0 with probability p, or the third
is 1.0 with probability 1—p. The fourth component is always 0 except at times t,, when targets are given
and its activation is 1.0. The target at to is 0. If the 2nd component was active at t3,_1 then the target at
ton, is the sum of the previous target at to,_» and the “marked” first input component at t2,_;. Otherwise
it is the product of these two values.

Hence non-initial targets depend on events that happened at least 2- T steps ago. Note that occurrences
of “value markers” and targets oscillate. See Figure 2 for an illustration of the task.

All streams are stopped once the absolute output error exceeds 0.04. Test streams are almost unlimited
(max. length = 1000 target occurrences), but training streams end after at most 10 target occurrences.
Learning and testing alternate: after each training stream we freeze the weights and feed 100 test streams.
Our performance measure is the average test stream size.

Task 1: Continual addition. p = 1.0 (no multiplication). T' = 20. Task 1 essentially requires to keep
adding (possibly negative) values to the already existing internal state.

Task 2: Continual addition and multiplication. p = 0.5, T = 20. If the 3rd input component is active
at to,—1 and the 1st is negative then the latter will get replaced by its absolute value.

Task 3: Gliding addition. Like Task 1, but targets at times t3,2 equal the sum of the two most recent
marked values at times t2, 1 and t2, 1 (the first target at t2 equals the first value at ¢1). 7' = 10. Task 3
is harder than task 1 because it requires selective partial resets of the current internal state.

4.1 Network Topology and Parameters

The 4 input units are fully connected to a hidden layer consisting of 3 memory blocks with 1 cell each
(roughly: less blocks decreased performance for standard LSTM and more blocks did not improve perfor-
mance significantly). The cell outputs are fully connected to the cell inputs, to all gates, and to the output
unit. All gates and output units are biased. Bias weights to in- and output gates are initialized block-wise:
—1.0 for the first block, —2.0 for the second, and so forth. (This is a standard initialization procedure: blocks
with higher bias tend to get released later during the learning phase - the precise initialization is not at all
important though.) Forget gates are initialized with symmetric positive values: +1.0 for the first block, +2.0
for the second, and so forth. The squashing functions g,h and f;, are the identity function.

4.2 Results

See Table 1. Test stream sizes are measured by number of target presentations before first failure. A stream
size below 3 counts as an unsuccessful trial. We report the best test performance during a training phase
involving 3 - 10® training streams, averaged over 10 independent networks.
Task 1. Both standard LSTM and LSTM with forget gates learn the task. Worse performance of LSTM
with forget gates is caused by slower convergence, because the net has to learn to remember everything and
not to forget.
Task 2. LSTM with forget gates solves the problem even when addition and multiplication are combined,
whereas standard LSTM’s solutions are not sufficiently accurate. This shows that forget gates add algorithmic
functionality to memory blocks besides releasing resources during runtime (their original purpose which is
not essential here).
Task 3. Standard LSTM cannot solve the problem at all, whereas LSTM with forget gates does find good
and even “perfect” solutions. Why? The forget gates learn to prevent LSTM’s uncontrolled internal state
growth (see section 2.1), by resetting states once stored information becomes obsolete.
Other Experiments. To compare standard LSTM and extended LSTM we ran numerous additional
experiments. In particular, we created continual variants of hard tasks in (Hochreiter and Schmidhuber,
1997). In general, standard LSTM (and alternative recurrent nets) failed, while LSTM with forget gates
succeeded. On the other hand we have not found a task yet that standard LSTM can solve but LSTM with
forget gates cannot (Gers et al., 1999).

The results indicate that forget gates are a mandatory patch for LSTM fed with continual input streams,
where obsolete memories need to be discarded at some point (see “Task 3: Gliding addition”). Experiment

Table 1: Average test stream size (percentage of successful trials given in parenthesis). In Task 3 one network
with forget gates exceeded the limit of 1000 target occurrences.

| Algorithm | Task 1 | Task 2 | Task 3 |

Standard LSTM 73 (100%) | - (0%) - (0%)
LSTM + Forget Gates | 42 (100%) | 40 (60%) | 241 (50%)

2 shows that forget gates also greatly facilitate operations involving multiplication.

5 Conclusion

LSTM, a method local in space an time, can extract sequence-processing algorithms from training sequences
whose regularities remain opaque to all other approaches we are aware of. While previous work focused
on training sequences with well-defined beginnings and ends, however, typical real-world input streams are
not a priori segmented into training subsequences indicating network resets. Therefore RNNs should be
able to learn appropriate self-resets. This is also desirable for tasks with hierarchical but a priori unknown
decompositions. For instance, re-occurring subtasks should be solved by the same network module, which
should be reset once the subtask is solved. Forget gates naturally permit LSTM to learn local self-resets
of memory contents that have become irrelevant. They also substantially improve LSTM’s performance on
tasks involving arithmetic operations.

The tasks reported above are artificial but do exhibit aspects of realistic tasks, such as continual input
streams, distributed input representations, continuous-valued targets and inputs and internal states, long
time lags. How about real world tasks? In ongoing work we are applying extended LSTM to raw continual
speech data. We have started to successfully extract additional relevant prosodic information neglected by
traditional, phoneme-based HMM approaches (Cummins et al., 1999).

Acknowledgments

This work was supported by SNF grant 2100-49’144.96 “Long Short-Term Memory”.

References

Cummins, F., Gers, F., and Schmidhuber, J. (1999). Language identification from prosody without explicit features.
In Proceedings of EUROSPEECH’99, volume 1, pages 371-374.

Gers, F. A.; Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction with LSTM. In
Proc. ICANN’99, Int. Conf. on Artificial Neural Networks, volume 2, pages 850-855, Edinburgh, Scotland. IEE,
London. Extended version submitted to Neural Computation.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735-1780.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions
on Neural Networks, 6(5):1212-1228.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propagation network. Technical Report
CUED/F-INFENG/TR.1, Cambridge University Engineering Department.

Tsung, F. S. and Cottrell, G. W. (1989). A sequential adder using recurrent networks. In Proceedings of the First
International Joint Conference on Neural Networks, Washington, DC, San Diego. IEEE, IEEE TAB Neural
Network Committee.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent net works. Neural
Computation, 1(2):270-280.

