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Abstract

Previous work on learning regular languages from exemplary training sequences showed that Long Short-
Term Memory (LSTM) outperforms traditional recurrent neural networks (RNNs). Here we demonstrate
LSTM’s superior performance on context free language (CFL) benchmarks for recurrent neural networks
(RNNs), and show that it works even better than previous hardwired or highly specialized architectures.
To the best of our knowledge, LSTM variants are also the first RNNs to learn a simple context sensitive
language (CSL), namely a™b"c".

Index Terms: Recurrent neural networks, long short-term memory, context free languages, context
sensitive languages.

1 Introduction

Recurrent neural networks (RNNs) are remarkably general sequence processing devices (Siegelmann & Sontag,
1991). In principle they are applicable to tasks beyond the reach of Hidden Markov Models (HMMs) or discrete
symbolic grammar learning algorithms (SGLAs) (Lee, 1996; Sakakibara, 1997). For instance, unlike RNNs,
both HMMs and SGLAs are limited to discrete state spaces. Unlike RNNs, HMMs typically ignore information
conveyed by the size of temporal delays between relevant events (e.g., in rhythmic patterns). Although the
HMM designer could in principle deal with a finite set of time delays between possible observations by devoting
a separate internal state for each possible delay, in general this would be cumbersome and inefficient. Unlike
RNNs, SGLAs cannot deal well with noisy input sequences (Osborne & Briscoe, 1997). RNNs, however,
perform gradient descent in a very general, continuous space of potentially noise-resistant algorithms, using
distributed internal memories for mapping real-valued input sequences to real-valued output sequences (noise
tends to make learning harder though—compare, e.g., Maass and Orponen (1998), Maass and Sontag (1999)).

Until recently, however, standard RNNs (Pearlmutter, 1995) have been plagued by a major practical
problem: the gradient of the total output error with respect to previous inputs quickly vanishes as the time lags
between relevant inputs and errors increase (Hochreiter, 1991; Bengio, Simard, & Frasconi, 1994; Hochreiter
& Schmidhuber, 1997). Hence standard RNNs fail to learn in the presence of time lags exceeding as few as
5 - 10 discrete time steps between relevant input events and target signals (Hochreiter, 1991; Schmidhuber,
1992).

The recent “Long Short-Term Memory” (LSTM) method (Hochreiter & Schmidhuber, 1997), however, is
not affected by this problem. LSTM can learn to bridge minimal time lags in excess of 1000 discrete time
steps (Hochreiter & Schmidhuber, 1997) by enforcing constant error flow through “constant error carousels”
(CECs) within special units, without loss of short time lag capabilities. Multiplicative gate units learn to
open and close access to the constant error flow. Moreover, LSTM’s learning algorithm is more efficient than
previous RNN algorithms such as real time recurrent learning (RTRL—Robinson & Fallside, 1987; Williams
& Zipser, 1992) and back propagation through time (BPTT—Williams & Peng, 1990; Werbos, 1988): it is
local in space and time, with computational complexity O(1) per time step and weight.

Recent research on LSTM has concentrated on improving the structure of the adaptive gates surrounding
the CECs. Here we will focus on our most recent LSTM variant (Gers & Schmidhuber, 2000), which provides
the gates with direct access to the CEC states, can learn to selectively reset its own memory contents, and
can produce stable results in presence of never-ending input streams.

Previous work showed that LSTM outperforms traditional RNN algorithms on numerous tasks involving
real-valued or discrete inputs and targets (Gers, Schmidhuber, & Cummins, 2000; Hochreiter & Schmidhuber,
1997), including tasks that require to learn the rules of regular languages (RLs) describable by deterministic
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Figure 1: LSTM memory block with one cell.

finite state automata (DFA) (Casey, 1996; Siegelmann, 1992; Blair & Pollack, 1997; Kalinke & Lehmann,
1998; Zeng, Goodman, & Smyth, 1994”). Until now, however, it has remained unclear whether LSTM’s
superiority carries over to tasks involving context free languages (CFLs), such as those discussed in the RNN
literature (Sun, Giles, Chen, & Lee, 1993; Wiles & Elman, 1995”; Steijvers & Grunwald, 1996; Tonkes &
Wiles, 1997; Rodriguez, Wiles, & Elman, 1999; Rodriguez & Wiles, 1998). Their recognition requires the
functional equivalent of a stack. It is conceivable that LSTM has just the right bias for RLs but might fail on
CFLs.

Here we will focus on the most common CFLs benchmarks found in the RNN literature: a™b" and
a"b"™B™A™. We study questions such as:

e Can LSTM learn the functional equivalent of a pushdown automaton?

e Given training sequences up to size n, can it generalize ton + 1,n+2,... 7
e How stable are the solutions?

e Does LSTM outperform previous approaches?

Finally we will apply LSTM to a context sensitive language (CSL). The CSLs include the CFLs, which
include the RLs. We will focus on the classic example a™b"c", which is a CSL but not a CFL (Section 3). In
general, CSL recognition requires a linear-bounded automaton, a special Turing machine whose tape length
is at most linear in the input size. The {a"b"c"} language is one of the simplest CSLs; it can be generated by
a tree-adjoined grammar and recognized using a so-called embedded push-down automaton (Vijay-Shanker,
1992) or a finite state automaton with access to two counters that can be incremented or decremented. To
our knowledge no RNN has been able to learn a CSL.

2 LSTM

We are using LSTM with forget gates and the recently introduced peephole connections (Gers & Schmidhuber,
2000). Forget gates were shown to be essential for problems involving continual or very long input strings
(Gers et al., 2000). Peephole connections allow the gates to access the CEC of the same memory block. This
proved to be essential for numerous symbolic and real-valued counting tasks (Gers & Schmidhuber, 2000).
The LSTM variant with peepholes and forget gates used in this paper is clearly superior to traditional LSTM,
and is now our method of choice.

The basic unit of an LSTM network is the memory block containing one or more memory cells and three
adaptive, multiplicative gating units shared by all cells in the block (Figure 1). Each memory cell has at its



core a recurrently self-connected linear unit called the “Constant Error Carousel” (CEC) whose activation is
called the cell state. The CECs enforce constant error flow and overcome a fundamental problem plaguing
previous RNNs: they prevent error signals from decaying quickly as they “back in time”. The adaptive gates
control input and output to the cells (input and output gate) and learn to reset the cell’s state once its contents
are out of date (forget gate). The gates are units whose outputs multiplicatively influence connections to or
from the linear unit holding the cell state. Peephole connections connect the CEC to the gates. All errors are
cut off once they leak out of a memory cell or gate, although they do serve to change the incoming weights.
The effect is that the CECs are the only part of the system through which errors can flow back forever, while
gates etc. learn the nonlinear aspects of sequence processing. This makes LSTM’s updates efficient without
significantly affecting learning power: The CECs permit LSTM to bridge huge time lags (1000 discrete time
steps and more) between relevant events, while traditional RNNs already fail to learn in the presence of 10
step time lags, despite requiring more complex update algorithms. Moreover, LSTM is local in space and
time (Schmidhuber, 1989), and it is more efficient than other RNN algorithms such as real time recurrent
learning (RTRL-—Robinson & Fallside, 1987; Williams & Zipser, 1992). LSTM’s computational complexity
for a memory block j per time step and weight is O(S;), where S; is the number of cells in the block. S,
is typically a small constant — in this paper it is in fact always equal to one, so that the computational
complexity is O(1). Back propagation through time (BPTT—Williams & Peng, 1990; Werbos, 1988) has the
same computational complexity (whereas RTRL is much worse) but is not local in time. It needs to store
activation values observed during sequence processing in a stack with potential unlimited size. Essentially,
LSTM has the complexity of BPTT(h) (Williams & Zipser, 1992), which truncates errors after h steps, and
which works as well as BPTT, according to our experience — if we did not have LSTM we would in fact use
BPTT(h).

2.1 Forward Pass

The cell output, y¢, is calculated based on the current cell state s. and four sources of input: net,. is input to
the cell itself while net;,, net, and net,,; are inputs to the input gates, forget gates, and output gates. We
consider discrete time steps ¢ = 0,1,2,.... A single step involves the update of all units (forward pass) and
the computation of error signals for all weights (backward pass). Throughout this paper j indexes memory
blocks; v indexes memory cells in block j (with S; cells), such that ¢j denotes the v-th cell of the j-th memory
block; wy,, is the weight on the connection from unit m to unit [. Index m ranges over all source units, as
specified by the network topology, and index m; ranges over all source units and also the CECs of the j-th
memory block. For the gates, f; , [ € {in,out, ¢} is a logistic sigmoid with range [0, 1].
For each discrete time step we use a two-phase update scheme that computes (in this order):

1. (a) Input gate activation 3™,
(b) forget gate activation y?,

(c) cell input and cell state s,
2. output gate activation °** and cell output y°.

Step la,1b. The input gate activation y*™ and the forget gate activation y® are computed as follows:
g Y

Sj
metin, () = 3 Wingm v (t=1) + 3 wingey scx(t=1) , Y™ (0) = fin, (metin, (1)) (1)
m v=1
Sj
nety, (t) = Zw%‘m y™ (1) + Z Wejey Scy (t=1) s y#(t) = fo;(nety, (1) - (2)
m v=1

The peephole connections for the input gate and the forget gate are incorporated in equation 1 and 2 by
including the CECs (containing the cell states) of memory block j as source units.

Step 1lc. The state of memory cell s.(t) is calculated by adding the squashed, gated input of the cell to
the state at the previous time step s.(t—1) (¢ > 0), which is multiplied (gated) by the forget gate activation

(Sc}’ (0) =0):

metes () = 3 wenm y™(E-1) , sex(£) = ¥ (1) sey(6—1) + 4™ (1) glnetes (1)) - 3)



Step 2. The output gate activation y°“ is computed as follows:

S;
netoutj (t) = Z Wout;m y"(t-1) + Z Woutjcy Sc? (t), yOUtj (t) = foutj (netoutj (t) . (4)
m v=1

Equation 4 includes the peephole connections for the output gate from the CECs of memory block j with the
cell states s.(t), actualized in step 1. The cell output y¢ is computed as follows:

Y (t) = ™ (1) se(t) - (5)

Finally, assuming a layered network topology with a standard input layer, a hidden layer consisting of
memory blocks, and a standard output layer, the equations for the output units & are:

netp(t) =Y wpm y™(t—1) ,  yF(t) = fulnetr(t) , (6)
m
where m ranges over all units feeding the output units and fj is the output squashing function.

2.2 Gradient-Based Backward Pass

Essentially, LSTM’s backward pass is an efficient fusion of slightly modified, truncated BPTT and a customized
version of RTRL (for details see Hochreiter & Schmidhuber, 1997; Gers et al., 2000). We are using iterative
gradient descent, minimizing an objective function F, here the usual mean squared error over all time steps
and all sequences. Appendix A lists pseudo code for the entire algorithm; see (Gers et al., 2000) for a full
derivation. Unlike BPTT and RTRL, LSTM’s learning algorithm is local in space and time.

3 Experiments

The network sequentially observes exemplary symbol strings of a given language, presented one input symbol
at a time. Following the traditional approach in the RNN literature we formulate the task as a prediction
task. At any given time step the target is to predict the possible next symbols, including the ”"end of string”
symbol T. When more than one symbol can occur in the next step all possible symbols have to be predicted,
and none of the others.

The network sequentially observes exemplary symbol strings of a given language, presented one input symbol
at a time, also referred to as input sequences. Every input sequence begins with the start symbol S. The empty
string, consisting of ST only, is considered part of each language. A string is accepted when all predictions
have been correct. Otherwise it is rejected.

This prediction task is equivalent to a classification task with two classes “accept” and “reject,” because the
system will make prediction errors for all strings outside the language. A system has learned a given language
up to string size n once it is able to correctly predict all strings with size < n.

Symbols are encoded locally by d-dimensional binary vectors with only one non-zero component, where d
equals the number of language symbols plus one for either the start symbol in the input or the ”end of string”
symbol in the output (d input units, d output units). +1 signifies that a symbol is set and —1 that it is not;
the decision boundary for the network output is 0.0.

CFL a"b" (Sun et al., 1993; Wiles & Elman, 1995”; Tonkes & Wiles, 1997; Rodriguez et al., 1999). Here
the strings in the input sequences are of the form a™b"; input and output vectors are 3-dimensional. Prior to
the first occurrence of b either a or b, or a or T at sequence beginnings, are possible in the next step. Thus,
e.g., for n=>=:

Inmput: S a a a a a bbbbb
Target: a/T a/b a/b a/b a/b a/b b bbb T

CFL a"b"B™A™ (Rodriguez & Wiles, 1998). The second half of a string from this palindrome or mirror
language is completely predictable from the first half. The task involves an intermediate time lag of length
2m. Input and output vectors are 5-dimensional. Prior to the first occurrence of B two symbols are possible
in the next step. Thus, e.g., for n=4,m=3:

Input: S a a a a b b b BBBAAAA
Target: a/T a/b a/b a/b a/b b/B b/B b/B B B A A A AT

4



CSL a™b"c™. Input and output vectors are 4-dimensional. Prior to the first occurrence of b two symbols
are possible in the next step. Thus, e.g., for n=>5:

Input: S a a a a a bbbb
Target: a/T a/b a/b a/b a/b a/b b b b b

3.1 Training and Testing

Learning and testing alternate: after each epoch (=1000 training sequences) we freeze the weights and run a
test. Even when all strings are processed correctly during training, it is necessary to test again with frozen
weights once all weight changes have been executed. Apart from ensuring the learning of the training set the
test also determines generalization performance, which we did not optimize by using, say, a validation set.

Training and test sets incorporate all legal strings up to a given length: 2n for a™b”, 3n for a™b"c™ and

2(n + m) for a™b™B™A". Training strings are presented in random order. Only exemplars from the class
“accept” are presented. Training is stopped once all training sequences have been accepted, or after at most
107 training sequences. The generalization set is the largest accepted test set.
Weight changes are made after each sequence. We apply the momentum algorithm (Plaut, Nowlan, & Hinton,
1986) with learning rate o is 107 and momentum parameter 0.99. All results are averages over 10 inde-
pendently trained networks with different weight initializations (these 10 initializations are identical for each
experiment).

CFL a"b". We study training sets with n € {1,.., N}. We test all sets with n € {1,.., M} and M €
{N,.., 1000} (sequences of length < 2000).

CFL a"b™B™A™. We use two training sets: a) The same set as used by Rodriguez and Wiles (1999) :
ne{l,.,11}, me{1,..,11} with n + m < 12 (sequences of length < 24). b) The set given by n € {1,..,11},
me{l,..,11} (sequences of length < 44). We test all sets with ne {1,.., M}, me{1,.., M} and M €{11,..,50}
(sequences of length < 200).

CSL a™b"c". We study two kinds of training sets: a) with n € {1,.., N} and b) with n € {N — 1, N}.
Case b) asks for a major generalization step that seems almost impossible at first glance: Given very similar
training sequences whose sizes differ by at most 2, learn to process sequences of arbitrary size! We test all
sets with n€{L,.., M}, Le{1,.., N — 1} and M €{N,..,500} (sequences of length < 1500).

3.2 Network Topology and Experimental Parameters

The input units are fully connected to a hidden layer consisting of memory blocks with 1 cell each. The cell
outputs are fully connected to the cell inputs, to all gates, and to the output units, which also have direct
“shortcut” connections from the input units (Figure 2). For each task we selected the topology with minimal
number of memory blocks that solved the task without extensive parameter optimization. Larger topologies
never led to disadvantages except for an increase in computational complexity.

All gates, the cell itself and the output unit are biased. The bias weights to input gate, forget gate and
output gate are initialized with —1.0, +2.0 and —2.0, respectively. Although not critical, these values have
been found empirically to work well; we use them for all our experiments. With this bias initialization, cell
states are initially close to zero, and, as training progresses, the biases become progressively less negative,
allowing the serial activation of cells as active participants in the network computation. The forget gates
start off closed, so that the cells initially remember everything. We also tried different bias configurations; the
results were qualitatively the same, which supports our claim that precise initialization is not critical — see
also Hochreiter and Schmidhuber (1997) and Gers, Schmidhuber, and Cummins (2000) for additional evidence
in this vein. All other weights are initialized randomly in the range [—0.1,0.1]. The cell’s input squashing
function g is the identity function. The squashing function of the output units is a sigmoid function with the
range [—2,2].

CFL o"b". We use one memory block (with one cell). With peephole connections there are 38 adjustable
weights (3 peephole, 28 unit-to-unit and 7 bias connections).

CFL a"b"™B™A". We use two blocks with one cell each, resulting in 110 adjustable weights (6 peephole,
91 unit-to-unit and 13 bias connections).

CSL a"™"b"c". We use the same topology as for the a"b™B™ A" language, but with 4 input and output
units instead of 5, resulting in 90 adjustable weights (6 peephole, 72 unit-to-unit and 12 bias connections).



Figure 2: Three-layer LSTM topology with a single input and output. Recurrence is limited to the hidden
layer, consisting here of a single LSTM memory block with a single cell. All 10 “unit-to-unit” connections are
shown (but bias and peephole connections are not).

Table 1: Previous results for the CFL a™b", showing (from left to right) the number of hidden units or
state units, the values of n used during training, the number of training sequences, the number of found
solutions/trials and the largest accepted test set.

Reference Hidden | Train. Train. Sol./ | Best Test
Units | Set [n] | Str. [10%] | Tri. [n]
(Sun et al., 1993)! 5 1,..,160 13.5 1/1 1,..,160
(Wiles & Elman, 1995”) 2 1,11 2000 4/20 | 1,.,18
(Tonkes & Wiles, 1997) 2 1,..,10 10 13/100 | 1,..,12
(Rodriguez et al., 1999)? 2 1,.,11 267 8/50 1,..,16

3.3 Previous results

CFL a"™b". Published results on the a"b™ language are summarized in Table 1. RNNs trained with plain
BPTT tend to learn to just reproduce the input (Wiles & Elman, 1995”; Tonkes & Wiles, 1997; Rodriguez
et al., 1999). Sun et al. (1993) used a highly specialized architecture, the “neural pushdown automaton”,
which also did not generalize well (Sun et al., 1993; Das, Giles, & Sun, 1992).

CFL a"v™B™A"™. Rodriguez and Wiles (1998) used BPTT-RNNs with 5 hidden nodes. After training
with 51 - 10% strings with n 4+ m < 12 (sequences of length < 24), most networks generalized on longer off-
training set strings. The best network generalized to sequences up to length 36 (n = 9,m = 9). But none of
them learned the complete training set.

CSL a™b"c". To our knowledge no previous RNN ever learned a CSL.

3.4 LSTM Results

CFL a™b". 100% solved for all training sets (Table 2). Small training sets (n € {1,..,10}) were already
sufficient for perfect generalization up to the tested maximum: n € {1,..,1000}. Note that long sequences of
this kind require very stable, finely tuned control of the network’s internal counters (Casey, 1996).

This performance is much better than with previous approaches, where the largest set was learned by the
specially designed neural push-down automaton (Sun et al., 1993; Das et al., 1992): n€ {1,..,160}. The latter,
however, required training sequences of the same length as the test sequences. From the training set with

!Sun’s training set was augmented stepwise by sequences misclassified during testing, and in the final accepted set n was in
{1,..,20} except for 20 random sequences up to length n=160 (the exact generalization performance was unclear).

2 Applying brute force search to the weights of the best network of Rodriguez et al. (1999) further improves performance to
acceptance up to n=28.



Train. Train. % Generalization

Set [n] | Str. [10%] | Sol. Set [n]

1 (19) | 100 | L,.., 1000 (1,.,118)
1, (19) | 100 | 1,.,587 (1,., 148)
1,,30 | 16 (19) | 100 | L,.., 1000 (1,.,408)
1 (28)
1 (40)

100 | 1,..,1000 (1,..,628)
100 | 1,..,767 (L,..,430)

Table 2: Results for the a™b™ language, showing (from left to right) the values for n used during training, the average
number of training sequences until best generalization was achieved, the percentage of correct solutions and the best
generalization (average over all networks given in parenthesis).

Train. Train. % Generalization
Set [n] | Str. [10%] | Sol. Set [n]
1,.,10 | 54 (62) ] 100 | 1,.,52 (L,.,28)
1,,20 | 28 (43) | 100 | 1,..,160 (L,..,66)
1,30 | 37 (43) | 100 | 1,.,228 (1, 91)
1,.,40 | 51 (48) | 90 | 1,.,500 (L,..,120)
1,50 | 60 (94) | 100 | 1,..,500 (1,..,409)
10,11 | 24 (78) | 100] 9,.,1 (1 )
20,21 | 829 (626) | 40 | 10,., 23

(
30,31 | 42 (855) | 30 | 29,., (29,..,
40,41 | 854 (1597) | 40 | 20,., (35,..
50,51 | 32 (621) | 60 | 43,..,57 (47,.,

oo
N
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Table 3: Results for the a”b™c¢™ language, showing (from left to right) the values for n used during training, the average
number of training sequences until best generalization was achieved, the percentage of correct solutions and the best
generalization (average over all networks in parenthesis).

n€{1,..,10} LSTM generalized to n € {1,..,1000}, whereas the best previous result (see Table 1) generalized
only to n€{1,..,18} (even with a slightly larger training set: n€{1,..,11}). In contrast to Tonkes and Wiles
(1997), we did not observe our networks forgetting solutions as training progresses. So unlike all previous
approaches, LSTM reliably finds solutions that generalize well.

The fluctuations in generalization performance for different training sets in Table 2 may be due to the fact
that we did not optimize generalization performance by using a validation set. Instead we simply stopped
each epoch (= 1000 sequences) once the training set was learned.

CFL a"b"B™A". Training set a): 100% solved; after 29 - 10% training sequences the best network of
10 generalized to at least n,m € {1,..,22} (all strings up to a length of 88 symbols processed correctly); the
average generalization set was the one with n,m€{1,..,16} (all strings up to a length of 64 symbols processed
correctly), learned after 25 - 10® training sequences on average.

Training set b): 100% solved; after 26 - 10% training sequences the best network generalized to at least
n,m € {1,..,23} (all strings until a length of 92 symbols processed correctly). The average generalization set
was the one with n,m € {1,..,17} (all strings until a length of 68 symbols processed correctly), learned after
82 - 10% training sequences on average. Unlike the previous approach of Rodriguez and Wiles (1998), LSTM
easily learns the complete training set and reliably finds solutions that generalize well.

CSL a"b"c™. LSTM learns 4 of the 5 training sets in 10 out of 10 trials (only 9 out of 10 for the training
set with n € {1,..,40}) and generalizes well (Table 3). Small training sets (n €{1,..,40}) were already sufficient
for perfect generalization up to the tested maximum: n € {1,..,500}, that is, sequences of length up to 1500.
Even in absence of any short training sequences (n € {N —1, N}) LSTM learned well (see bottom half of Table
3).

We also modified the training procedure, by presenting each exemplary string without providing all possible
next symbols as targets, but only the symbol that actually occurs in the current exemplar. This led to slightly
longer training durations, but did not significantly change the results.
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Figure 3: CFL a"b" (n = 5): Test run with network solutions. Top: Network output y;. Middle: Cell state
s¢ and cell output y.. Bottom: Activations of the gates (input gate v;,,, forget gate y, and output gate yoys)-

3.5 Analysis

How do the solutions discovered by LSTM work?

CFL a"b". Figure 3 shows a test run with a network solution for n=>5.

The cell state s, increases while a symbols are fed into the network, then decreases (with the same step
size) while b symbols are fed in. At sequence beginnings (when the first a symbols are observed), however, the
step size is smaller due to the closed input gate, which is triggered by s, itself. This results in “overshooting”
the initial value of s, at the end of a sequence, which in turn triggers the opening of the output gate, which
in turn leads to the prediction of the sequence termination.

CFL a"b™B™A"™. The behavior of a typical network solution is shown in Figure 4.

The network learned to establish and control two counters. The two symbol pairs (a, A) and (b, B) are
treated separately by two different cells, co and c1, respectively. Cell ¢y tracks the difference between the
number of observed a and A symbols. It opens only at the end of a string, where it predicts the final T'. Cell
c1 treats the embedded b B™ substring in a similar way. While values are stored and manipulated within a
cell, the output gate remains closed. This prevents the cell from disturbing the rest of the network and also
protects its CEC against incoming errors.

CSL a"b"c". The network solutions use a combination of two counters, instantiated separately in the two
memory blocks (Figure 5).

Here the second cell counts up, given an a input symbol. It counts down, given a b. A ¢ in the input
causes the input gate to close and the forget gate to reset the cell state s.. The second memory block does
the same for b, ¢, and a, respectively. The opening of output gate of the first block indicates the end of a
string (and the prediction of the last T'), triggered via its peephole connection.

Why does the network not generalize for short strings when using only two training strings as for the
a™b"c" language (see Table 3)? The gate activations in Figure 5 show that activations slightly drift even when
the input stays constant. Solutions take this state drift into account, and will not work without it or with
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Figure 4: CFL a"b™B™A™ (n=5,m=4): Test run with network solution. Top: Network output y;. Middle:
Cell state s, and cell output y.. Bottom: Activations of the gates (input gate vy, forget gate y,, and output
gate Yout)-

too much of it, as in the case when the sequences are much shorter or longer than the few observed training
examples. This imposes a limit on generalization in both directions (towards longer and shorter strings). We
found solutions with less drift to generalize better.

Further improvements. Even better results can be obtained through increased training time and
stepwise reduction of the learning rate, as done in (Rodriguez et al., 1999). The distribution of lengths
of sequences in the training set also affects learning speed and generalization. A set containing more long
sequences improves generalization for longer sequences. Omitting the sequence with n =1 (and m = 1),
typically the last one to be learned, has the same effect. Training sets with many short and many long
sequences are learned more quickly than uniformly distributed ones.

Related tasks. The (ba*)" regular language is related to a™b” in the sense that it requires to learn a
counter, but the counter never needs counting down. This task is equivalent to the “Continual Spike Timing”
task (Gers & Schmidhuber, 2000) learned by LSTM for £ = 50 with » > 1000. A hand-made, hardwired
solution (no learning) of a second order RNN worked for values of k£ until 120 (Steijvers & Grunwald, 1996).

For all three tasks peephole connections are mandatory. The output gates remain closed for substantial
time periods during each input sequence presentation (compare Figures 3, 4 and 5); the end of such a period
is always triggered via peephole connections.



0 5 10 15  Time

Figure 5: CSL a™b"c" (n=25): Test run with network solution (the system scales up to sequences of length
1000 and more). Top: Network output yx. Middle: Cell state s. and cell output y.. Bottom: Activations of
the gates (input gate y;,, forget gate y, and output gate yout).

4 Conclusion

We found that Long Short-Term Memory (LSTM) clearly outperforms previous RNNs not only on regular
language benchmarks (according to previous research) but also on context free language (CFL) benchmarks.
It learns faster and generalizes better. LSTM also is the first RNN to learn a context sensitive language.

Although CFLs like those studied in this paper may also be learnable by certain discrete symbolic grammar
learning algorithms (SGLAs) (Sakakibara, 1997; Lee, 1996; Osborne & Briscoe, 1997), the latter exhibit much
more task-specific bias, and are not designed to solve numerous other sequence processing tasks involving
noise, real-valued inputs / internal states, and continuous output trajectories, which LSTM solves easily
(Hochreiter & Schmidhuber, 1997; Gers et al., 2000).

Our findings reinforce the perception that LSTM is a very general and promising adaptive sequence
processing device, with a wider field of potential applications than alternative RNNs.
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A Peephole LSTM with Forget Gates in Pseudo-code

init network:

reset: CECs: sc;g:éc}):(); partials: dS=0; activations: y=7=0;
forward pass:

input units: y = current external input;

roll over: activations: §j=y; cell states: §c; =53

loop over memory blocks, indexed j {

Step la: input gates (1):

~ S; ~ i1hs
nNetin; = D Wingm 7 + 2 ul1 Wingey 8cvs Y™ = fin; (netin;);
Step 1b: forget gates (2):
~ S; ~ .
nety; =3 Woim §™ + 2000 Weser Bevs  y¥ = [ (nety;);

Step 1c: CECs, i.e the cell states (3):

loop over the S; cells in block j, indexed v {

netey =30, Wevm §75 Sy =y¥ S +y™ g(neter); }
Step 2:
output gate activation: (4):
~ S; )
netout; = Zm Wout;m g™+ EUJ:l Woutjey Scts yOUt] = fout]- (netoutj);

cell outputs (5):
loop over the S; cells in block j, indexed v { Yo = youti Scvs 1
} end loop over memory blocks
output units (6): nety =Y., wem y™;  yF = fr(nety);
partial derivatives:
loop over memory blocks, indexed j {

loop over the S; cells in block j, indexed v {

Scv

. 85,0
cells, (dSim, = i);

awc}) m

dSiy, = dSiy, y¥i + g'(netey) y'"i §™;

jv Os v v 0sv
input gates, (dSm’ = ol dSm o= T —, -):
J il anc;.’

ds?? :dS{Z’,m Y% + g(netey) fin;(netin;) 9™;

in,m
loop over peephole connections from all cells, indexed v' {
ds?’ = ng::’C;, Y% +g(netey) fin, (netin;) 875}

in;
i

. S v . 08,
Ju . % A .
forget gates, (dSym = wgym ds T ):
35

dS%y, = dSLy, y%i + 3 fi, (nety,) §™;
loop over peephole connections from all cells, indexed v' {
Jv _ jv . ~ ’ 'L
dScpc}” = ngac;?' yV’J —|—$C; ngj (net%) Sg H }

} } end loops over cells and memory blocks
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backward pass (if error injected):
errors and Js:
injection error: e, = tF — y¥;
s of output units: 0, = fi(nety) ex;

loop over memory blocks, indexed j {

ds of output gates:
éoutj = féutj (netoutj) (Zf":l Sc; Zk wk:c}‘ 5k) 5

internal state error:
loop over the S; cells in block j, indexed v {

€sey = Yo (Ek Whey 5k); }
} end loop over memory blocks
weight updates:
output units: Awyg,, = a o0 y™;

loop over memory blocks, indexed j {
output gates:
Awoutym =@ Sout §™;  AWout,er = Jout Scy;
input gates:
Awin,m = 042521 €.y dSzj:,m;
loop over peephole connections from all cells, indexed v' {

— S; juo
sz’n,c;’ =ay,’ Csc ds’® .5}

in,c;
forget gates:
Awgyp = aZle €sey dSé’,’n;
loop over peephole connections from all cells, indexed v' {
Aww;' a2, €ses dSZ:;;,; }

cells:
loop over the S; cells in block j, indexed v {

chym =a es, asit s}

} end loop over memory blocks
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